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In our previous work [N. Gürlebeck and M. Scholtz, Phys. Rev. D 95, 064010 (2017)], we have shown
that electric and magnetic fields are expelled from the horizons of extremal, stationary and axially
symmetric uncharged black holes; this is called theMeissner effect for black holes. Here, we generalize this
result in several directions. First, we allow that the black hole carries charge, which requires a
generalization of the definition of the Meissner effect. Next, we introduce the notion of almost isolated
horizons, which is weaker than the usual notion of isolated horizons, since the geometry of the former is not
necessarily completely time independent. Moreover, we allow the horizon to be pierced by strings, thereby
violating the usual assumption on the spherical topology made in the definition of the weakly isolated
horizon. Finally, we spell out in detail all assumptions entering the proof and show that the Meissner effect
is an inherent property of black holes even in full nonlinear theory.
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I. INTRODUCTION

The Meissner effect of black holes describes their
property to expel any exterior magnetic field in case the
black holes become extremal. This was discovered in
Refs. [1–3] and has since then been discussed for electro-
magnetic test fields [4,5] and particular classes of black
holes surrounded by a strong magnetic field [6–10].
In the recent paper [11], we proved that the Meissner

effect holds even for generic uncharged black holes in
equilibrium that are distorted by exterior matter and
electromagnetic fields. This implies that the expulsion of
the electromagnetic field is not due to the specific geom-
etries like the Kerr geometry investigated so far. Still, its
physical origin is not entirely understood. Therefore, the
current paper serves two purposes. First, we will show that
charged black holes exhibit the Meissner effect for strong
electromagnetic fields as well, which will include all
previous results. Second, we will relax as many assump-
tions as possible to still be able to prove the result to
identify the physically necessary ones.
In order to understand the conceptual problems related to

the first task, it is instructive to discuss first the classical
example of superconductors in external magnetic fields,
which lends its name to this property of black holes.

Let a neutral superconducting sphere that is above its
critical temperature Tc be embedded in a magnetic field.
When cooling it below Tc, the magnetic field is expelled. The
behavior of uncharged black holes is analogous to this
standard case. Now, consider a superconducting sphere at
a temperature above Tc that carries some net charge, say,
because it is dotedwith ions. If that sphere rotates, it generates
itself already amagnetic field that penetrates its surface. If we
apply now an external field and cool the superconductor
below its critical temperature, the external field will still be
expelled. However, the magnetic field produced by the
moving interior charges still causes a nonvanishing magnetic
flux across its surface. Hence, the Meissner effect does not
predict that the total magnetic flux vanishes but only that the
flux caused by external fields vanishes.
Similarly, consider the Kerr-Newman metric, which has

an electric charge QE. Due to its rotation with respect to
inertial observers at infinity, it also exhibits a magnetic field
penetrating the horizon. This would be additional to any
other magnetic test fields generated by external sources.
Clearly, also here, the Meissner effect discussed in Ref. [4]
can only make a statement about the flux caused by the
external matter.
In the test field approach, both contributions to the

magnetic flux, the one from the black hole and the one from
the test field, can be trivially disentangled, and the Meissner
effect can be formulated for the test field alone; see, e.g.,
Ref. [4]. However, for strong magnetic fields, this disen-
tanglement is more involved because of the nonlinearity of
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the theory. Thus, it is not obvious which part of the flux
needs to vanish. Technically, this means that in our proof in
Ref. [11], the argument that the vanishing charge of the
horizon implies that the integration constants and conse-
quently the fields vanish, does not apply anymore. But as
described above, it should not be expected that the total
magnetic flux is vanishing. It should rather be understood
that the magnetic field penetrating an extremal horizon
does solely depend on the properties of the horizon like its
electric and magnetic charge and not on the configuration
of the external matter. This can be made more precise using
the initial value problem of the underlying partial differ-
ential equations. To solve them, initial data need to be
provided at the horizon and a null surfaceN intersecting it.
The former describes horizon properties, whereas the latter
describes the external matter and fields. The flux is now
supposed to be independent of any initial data given on N .
This implies then that the matter and electromagnetic fields
in the exterior can be distributed arbitrarily without
changing the magnetic flux across the horizon.
In contrast to our previous work [11], we will allow for

more general situations, in addition to allowing for a charge
of the black hole. For example, we will allow strings
piercing the horizon as it is the case for the C-metric [12],
where the Meissner effect was already observed for test
fields [13]. Additionally, we will relax the equilibrium
condition further generalizing the notion of isolated hori-
zons to almost isolated horizons. Lastly, we will not assume
that the full Einstein equations hold but rather that only one
of its projections does to allow for modified theories of
gravity.
The paper is structured as follows. In Sec. II, we

introduce the notion of charged almost isolated horizons
as well as the constraint equations, which need to be solved
at the horizon. In Sec. III, we assume additionally axial
symmetry to solve the constraint equation explicitly. This
shows that the electromagnetic flux across the horizon
depends only on horizon properties, which we parametrize
in terms of the electric and magnetic charge and dipole and
quadrupole moment of the almost isolated horizon, for
illustration. The results are summarized and discussed in
Sec. IV, where we also give the main Theorem 1.
Throughout the paper, we use geometric units, in which

c ¼ G ¼ 1, and the metric signature diagðþ1;−1;−1;−1Þ.
Moreover, we use the abstract index notation, cf. Ref. [14].
By some abuse of notation, we use the same alphabet for
the abstract indices of quantities regardless of the manifolds
on which they are defined.

II. BLACK HOLES IN EQUILIBRIUM

In our previous proof [11], the black holes in equilibrium
were modeled by weakly isolated horizons, cf. Ref. [15]. In
order to shed some light on the origin of the Meissner effect,
we will carefully spell out all assumptions, which are
necessary for our proof. This allows for some generalizations

of the notion of weakly isolated horizons including the
possibility that it is pierced by strings, i.e., conical singu-
larities. Thus, we give here a detailed definition of these
generalized weakly isolated horizons, where we indicate
deviations from the standard formalism.
Additionally, we will relax the notion of stationarity used

in Ref. [11], which implied essentially that all quantities on
the horizon are time independent. Here, we require this
only for the shear of the ingoing null congruence as well as
one component of the electromagnetic field. This makes the
black not be an isolated horizon anymore but—what we
call—an almost isolated horizon, cf. Definition 3.

A. Nonexpanding horizons

Let M be a manifold equipped with a metric gab
and a connection ∇a, which is compatible with gab. First,
we introduce the notion of nonexpanding horizons similar to
Ref. [15] in order to describe black holes in equilibrium.
Definition 1.—A nonexpanding horizon H ⊂ M is a null

hypersurface with the topologyK × R, whereK is a compact
two-dimensional manifold such that every normal la has
vanishing expansion and the Ricci tensor Rab satisfies the
following energy condition:

Rablb is a causal and future-pointing vector: ð1Þ
In Ref. [15], the manifold K was assumed to be a

topological 2-sphere, which is indeed the most typical case.
In the present work, though, we allow topological defects as
we discuss in Sec. III A. Moreover, it is known that black
holes distorted by external matter can even have the top-
ology of a torus [16]. In order to include these cases in the
formalism, we keepK general for the moment, although we
will exclude the tori later. The topological defects or the
choice of K does not affect the subsequent discussion.
Moreover, the condition (1) was defined in terms of the

energy-momentum tensor in Ref. [15]. In order to keep the
proof as general as possible, we do not impose the full
Einstein equations but only their projection onto the normal
la restricted to the horizon,

Φ00 ≐ ϕ0ϕ̄0; ð2Þ
see the Appendix for the standard notation of the Newman-
Penrose (NP) formalism. We use the relation ≐ to indicate
equality of two quantities on the horizon H. For Einstein’s
theory, the condition (1) is equivalent to the standard
definition using the energy-momentum tensor, but the form
(1) is applicable without assuming specific field equations.
Note that Eq. (2) does not exclude the presence of other
types of matter TM

ab; we merely exclude the flux of this
matter through the horizon. Additionally, it is included that
Einstein’s equations are modified provided that Eq. (2)
still holds.
The normal la in Definition 1 is unique up to a scaling

by an arbitrary function. Let us choose any such normal and
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complete it to a NP null tetrad ðla; na; ma; m̄aÞ. Since la is
by definition hypersurface orthogonal onH, it satisfies [14]

l½a∇blc� ≐ 0: ð3Þ

Projecting this equation onto the aforementioned null
tetrad, we get two conditions:

κ ≐ 0; ϱ ≐ ϱ̄: ð4Þ

The former condition shows that la is geodesic, while the
latter states that la is twist free. Notice that the conditions
(4) are independent of the choices of na, ma, and m̄a. The
expansion of the geodesic congruence la is then given by
the real part of the spin coefficient ϱ and by Definition 1
vanishes on the horizon. Hence, together with Eq. (4), we
have

ϱ ≐ 0: ð5Þ

The Ricci identity (A7a) then implies

jσj2 þΦ00 ≐ 0: ð6Þ

Using the definition (A5) and the energy condition (1), we
find

σ ≐ 0; Φ00 ≐ 0: ð7Þ

Vanishing of σ means that la is shear free. Using Eq. (2),
the second condition implies

ϕ0 ≐ 0: ð8Þ

This is the only place where the specific relation between
the Ricci tensor and the matter enter our considerations.
Now, the Ricci identity (A7b) together with (4) and (7)

gives

Ψ0 ≐ 0: ð9Þ

As discussed in Ref. [15], the energy condition (1) implies
also

Φ01 ≐ Φ02 ≐ 0; ð10Þ

consequently,

Ψ1 ≐ 0 ð11Þ

by the Ricci identity (A7p).

B. Bondi-like tetrad and coordinates

The NP tetrad was arbitrary except for the fact that la

was chosen normal to the horizon. Subsequently, we fix

some of the gauge freedom in its choice and introduce
coordinates following Ref. [17]. As mentioned above, the
scaling of la is free. We introduce equivalence classes ½la�
as the sets of normals, which differ only by a constant
rescaling. We fix a specific equivalence class by the
condition

ð£lDalbÞ⋆ ≐ 0; ð12Þ

where £l is the Lie derivative along la and Da is the
intrinsic connection on H defined by XaDa ≐ Xa∇a for
any Xa tangent to H. Finally, the ⋆ denotes the pullback of
the expression to the horizon so that ðlaÞ⋆ ≐ 0. The
condition (12) is used in Ref. [15] to define weakly isolated
horizons.
Definition 2.—A weakly isolated horizon is a pair

ðH; ½la�Þ, where H is a nonexpanding horizon in the sense
of Definition 1 and any element of ½la� satisfies the
condition (12).
Equation (12) implies the zeroth law of black hole

thermodynamics. Notice that this is merely a gauge fixing
and does not restrict the geometry. However, in Ref. [15], in
the case of axially symmetric horizons, the geometry was
restricted by requiring elementary flatness, as we discuss in
Sec. III A.
We define the coordinate v up to an arbitrary constant by

setting [cf. (A2)]

Dv ≐ 1: ð13Þ

The slices ofH of constant vwill be denoted byKv, and we
fix the integration constant by choosing an arbitrary slice
K0, where we set v ¼ 0. The v-dependence of the NP
scalars describes their evolution along the horizon. Thus,
we will refer to v as the time coordinate, although strictly
speaking, it is the advanced time and, hence, a null
coordinate.
Next, we introduce arbitrary coordinates xI , I ¼ 2, 3 on

K0 and propagate them along H by

£lxI ≐ 0: ð14Þ

The specific choice of the coordinates xI will be made later
and depends on the topology of K0.
Since the vectors ma and m̄a have not been specified so

far, we first require that they are tangent toH. Then, we can
perform a spin transformation (A13) with the parameter

χ ≐
i
2

Z
v

0

ðε − ε̄Þdv ð15Þ

so that after the transformation the spin coefficient ε is real
on the horizon,

ε ≐ ε̄: ð16Þ

MEISSNER EFFECT FOR AXIALLY SYMMETRIC CHARGED … PHYS. REV. D 97, 084042 (2018)

084042-3



Together with Eqs. (5) and (7), which are not affected by
the spin, the condition (16) implies that ma is Lie dragged
along the horizon,

£lma ≐ 0: ð17Þ

There is still a gauge freedom in the choice of ma on
the initial slice K0. At this stage, we merely require that
ma is tangent to it so that m ≐ ξIðxJÞ∂I for some ξI .
A specific choice will be made later and depends again on
the topology of K0. Since we have fixed the triad
ðla; ma; m̄aÞ on the horizon by the conditions above,
we have also fixed the remaining vector of the null tetrad
na on H.
In order to propagate the coordinates ðv; x2; x3Þ and the

null tetrad ðla; na; ma; m̄aÞ off the horizon, we extend na

geodesically by requiring [cf. (A2)]

Δna ¼ 0: ð18Þ

Afterward, we propagate the remaining vectors along na,
i.e.,

Δla ¼ Δma ¼ 0: ð19Þ

The NP definitions (A1) then imply

γ ¼ τ ¼ ν ¼ 0 ð20Þ

in a sufficiently small neighborhood of the horizon.
We denote the affine parameter of na by r and set r ≐ 0.

Finally, we propagate the coordinates off the horizon by

Δv ¼ ΔxI ¼ 0: ð21Þ

In this way, we obtain a Bondi-like coordinate system xμ ¼
ðv; r; x2; x3Þ and a Bondi-like tetrad of the form

l ¼ ∂v þ U∂r þ XI∂I; ð22aÞ

n ¼ −∂r; m ¼ Ω∂r þ ξI∂I ð22bÞ

in a sufficiently small neighborhood ofH. By construction,
we have

U ≐ XI ≐ Ω ≐ 0: ð23Þ

In addition, applying the commutators (A3a) and (A3d)
to the coordinate v yields

π ¼ αþ β̄; μ ¼ μ̄: ð24Þ

The latter condition implies that na is a nontwisting,
hypersurface orthogonal congruence. For an explicit

construction of the Bondi-like tetrad in the Kerr-
Newman spacetime, see Ref. [18].
To conclude this section, let us enumerate the conse-

quences of condition (12), which was employed in order to
fix the null normal la up to rescaling by a constant factor.
In the NP formalism, Eq. (12) is equivalent to

Dπ ≐ Dε ≐ 0: ð25Þ

Combining the Ricci identities (A7d) and (A7e) with
Eq. (24), we find

Dα ≐ Dβ ≐ δε ≐ 0: ð26Þ

Since ε is real in the gauge introduced above, the last
equation together with (25) in fact implies that ε is constant
throughout the horizon. The quantity κðlÞ ≐ 2ε measures
the acceleration of the normal la, and thus its constancy is
interpreted as the zeroth law of black hole thermodynamics.
The value of the constant κðlÞ depends on the scaling of la.
Still, the notion of extremal weakly isolated horizons, i.e.,
κðlÞ ¼ 0 is unambiguously defined.
In what follows, we will use the superscript ð0Þ to

indicate the value of a quantity on the initial slice K0.
For example, the time independence of π, Eq. (25), implies
that the value of π on H is

π ≐ πð0Þ: ð27Þ

C. Almost isolated horizon

As mentioned in Sec. II B, the choice (12) of la is merely
a gauge fixing and can be made for any nonexpanding
horizon. With this choice, la is a Killing vector of the
induced three-dimensional degenerate metric on H.
However, la is in general not a Killing vector of the full
four-dimensional metric. In particular, even the connection
Da is not necessarily time independent, since the spin
coefficients μ and λ can depend on v.
Imposing that the full connection Da is time

independent,

½£l;Da� ≐ 0; ð28Þ

one arrives at the notion of the isolated horizon [15]. Unlike
the condition for the weakly isolated horizon (12), the
assumption (28) is a restriction of the spacetime geometry
and is equivalent to the requirement that la satisfies the
four-dimensional Killing equation up to the second order in
the coordinate r. In effect, Eq. (28) makes λ and μ time
independent.
In Ref. [11], we assumed the presence of a stationary

Killing vector, which amounts to the requirement that the
horizon under consideration is, in fact, isolated in this
strong sense. In the present work, we relax this assumption
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by allowing one component of the connection to be time
dependent, and it is instructive to see what is the related
physical effect allowed by this weaker assumption.
For Einstein-Maxwell spacetimes, the scalar curvature

Λ ¼ 0 and the Bianchi identity (A8b) can be used to deduce
DΨ2 ≐ 0. The Ricci identity (A7h) can be solved, yielding

μ ≐ μð0Þe−κðlÞv þ 1

κðlÞ
ððπð0Þ þ jπð0Þj2 þΨð0Þ

2 Þð1 − e−κðlÞvÞ:

ð29Þ

In the extremal limit, i.e., vanishing surface gravity κðlÞ, this
solution simplifies to

μ ≐ μð0Þ þ vððπð0Þ þ jπð0Þj2 þ Ψð0Þ
2 Þ: ð30Þ

Recall that μ, which is real for the Bondi-like tetrad,
represents the expansion of the (future-pointing) congru-
ence na. Clearly, the expression (30) changes the sign once
as v varies from −∞ to ∞. In other words, the horizon is
not a trapped surface over the full range of v. This might
also happen in the nonextremal case, but not necessarily.
Setting Dμ ≐ 0 prevents this behavior. For our proof of the
Meissner effect, however, it is not necessary to impose this
condition, and therefore we shall not do so. Thus, the
Meissner effect will hold even ifH is not a trapped surface.
Solving the Ricci identity (A7g), one finds

λ ≐ λð0Þe−κðlÞv þ 1

κðlÞ
ðð̄πð0Þ þ ðπð0ÞÞ2Þð1 − e−κðlÞvÞ; ð31Þ

where ð is defined by (A15) and πð0Þ has the spin weight
−1. At this point, we require that λ is time independent on
the horizon, which implies the first constraint we need for
the proof of the Meissner effect, namely

ð̄πð0Þ þ ðπð0ÞÞ2 ¼ κðlÞλð0Þ: ð32Þ

As explained above, this is a weaker condition than (28).
To summarize the previous points, we have the following

definition.
Definition 3.—An almost isolated horizon ðH; ½la�; naÞ

is a weakly isolated horizon ðH; ½la�Þ in the sense of
Definition 2, additionally equipped with a future-pointing
null congruence na, which emanates from the horizon and
satisfies the following:

(i) There exists an la ∈ ½la� such that lana ≐ 1.
(ii) na∇anb ≐ 0.
(iii) The congruence na is nontwisting.
(iv) The shear of na is constant along la.
Let us stress that, among the conditions listed in

Definition 3, only the last one is constraining the geometry;
the others are gauge, as discussed above.

D. Initial data

Inspecting the Ricci and the Bianchi identities, one can
identify the free data determining the geometry of the
spacetime including the near-horizon geometry. It turns out
that the initial data can be prescribed on two null hyper-
surfaces. One is the horizonH, and the other one is the null
hypersurface N intersecting H in the slice K0. Due to the
properties of nonexpanding horizons, cf. Definition 1, all
the data onH are, in fact, completely determined by data on
K0, although not necessarily time independent. In a Bondi-
like tetrad, the constant κðlÞ and the functions

μð0Þ; λð0Þ; πð0Þ; ξð0Þ2; ξð0Þ3 ð33Þ

can be specified freely on K0 [17,19], independently of the
matter model or Einstein’s equations. The Weyl scalar Ψ4,
on the other hand, must be prescribed on the entire null
hypersurface N .
Let us impose a specific matter model, namely the ele-

ctromagnetic field obeying the Maxwell equations (A10a)–
(A10b) with electric and magnetic sources, which are only
two of the four Maxwell equations (A10). As discussed
above, we do not allow for any flux of matter across the
horizon, which implies that the transversal component of
the current must vanish, J ala ≐ 0. Hence, the current J a
must be tangent to the horizon, which, however, implies
luminal motion for the carriers of the charge. Even though
such a situation seems unphysical, we still allow the current
in the direction of la on H in the spirit of being as general
as possible.
Under these assumptions, the electromagnetic field is

determined by the value of ϕð0Þ
1 onK0 and by ϕ2 onN . The

sole nonvanishing component J ana of the current on the
horizon can be prescribed arbitrarily on H. Additionally,
the current J a can be prescribed arbitrarily onN as long as
it satisfies the continuity equation.
Finally, the scalar curvature Λ must be specified on

H ∪ N , but imposing Einstein’s equations would reduce
this freedom. Note that we constrain the matter only by
requiring the energy condition (1).

E. Electromagnetic field

So far, we have constrained the geometry of the horizon.
We will have to constrain the time dependence of the
electromagnetic field on H as well. Although we do not
impose full Einstein equations as explained after Eq. (2),
we do impose the Maxwell equations (A10a) and (A10b),
which contain only derivatives tangent to the horizon. This
does not mean that we treat the electromagnetic field as a

test field. For example, ϕð0Þ
1 is part of the free data on K0,

and it affects the off-horizon geometry via the field
equations one imposes; see, e.g. the Bianchi identity (A8g).
Equations (A10a) and (8) as well as the assumptions on

the current made in Sec. II D imply

MEISSNER EFFECT FOR AXIALLY SYMMETRIC CHARGED … PHYS. REV. D 97, 084042 (2018)

084042-5



Dϕ1 ≐ 0: ð34Þ

In order to make the electromagnetic field time independent
on the horizon, we have to assume additionally

Dϕ2 ≐ 0: ð35Þ

Then, the latter Maxwell equation implies

δ̄ϕð0Þ
1 þ 2πð0Þϕð0Þ

1 ¼ κðlÞϕ
ð0Þ
2 ð36Þ

on K0. In other words, the assumption that the electro-

magnetic field is stationary on the horizon makes ϕð0Þ
1

subject to the constraint (36) rather than free data.

III. MEISSNER EFFECT

After introducing all the aforementioned notions, we can
make the formulation of the Meissner effect more precise.
First, the Meissner effect is a property of the magnetic flux
across any part of the horizonH, which is described by ℑϕ1

at H and has to satisfy the constraint (36). The Meissner
effect states now that its solution is independent of any free
data, which describes exterior fields and matter, i.e., of any
free data given onN as well as Λ and J a. As an additional
ingredient for the Meissner effect, we assume as it is
normally done that the horizon H is axially symmetric and
the electromagnetic field shares this symmetry. We detail its
implications subsequently.

A. Axial symmetry

Until now, all our calculations were local and indepen-
dent of the topology and the geometry of the slices Kv.
Those will be specified now by assuming that K0 is an
axially symmetric 2-sphere with deficit angles at the poles.
The ordinary case of topological 2-spheres treated by
Ref. [15] is, of course, included by setting the deficit angles
to zero.
In the axially symmetric case, one can introduce a

preferred orthogonal coordinate system1 xI ¼ ðζ;ϕÞ
adapted to the axial symmetry [21], in which the 2-metric
reads2

qð0ÞIJ dx
IdxJ ¼ −

A
4π∘

ðf−1ðζÞdζ2 þ fðζÞdϕ2Þ; ð37Þ

where ζ ∈ ½−1; 1�, ϕ ∈ ½0; 2π∘Þ and A is the area of the slice
K0. The Killing vector associated with the axial symmetry
is

ηa ¼
� ∂
∂ϕ

�
a

ð38Þ

and

fðζÞ ¼ −
4π∘
A

ηaη
a: ð39Þ

The function f vanishes only at the north (south) pole ζ ¼
þ1 (ζ ¼ −1).
In Ref. [21], an additional geometric restriction is

imposed, namely that f0ð�1Þ ¼∓ 2, where the prime
denotes the derivative with respect to ζ. This amounts to
assuming elementary flatness at the poles [22]. In the
present work, we relax this assumption and allow for more
general spacetimes, where the horizon might be pierced by
struts. We parametrize the struts by introducing deficit
angles α� via

f0ð�1Þ ¼∓
�
2þ α�

π∘

�
: ð40Þ

Nonetheless, the construction leading to the metric (37)
given in Ref. [21] is not affected by this generalization. The
presence of the deficit angles is also the reason why
we parametrize the metric (37) by the area A of K0 rather

than by the “radius” R ¼
ffiffiffiffiffi
A
4π∘

q
as in Ref. [21]. For later

reference, let us denote such aK0 by the symbol Sαþ
α− . Since

la is a Killing vector of the metric onH, the topology of the
slices Kv cannot change in time.
In these coordinates, a convenient choice of the null

vector tangent to K0 is

ma ¼
ffiffiffiffiffiffiffi
2π∘
A

r � ffiffiffi
f

p � ∂
∂ζ

�
a
þ iffiffiffi

f
p

� ∂
∂ϕ

�
a
�
: ð41Þ

The intrinsic connection on K0 is then fully characterized
by the spin coefficient

að0Þ ¼ αð0Þ − β̄ð0Þ ¼ maδ̄m̄a ¼ −
ffiffiffiffiffiffiffiffiffi
π∘
2Af

r
f0: ð42Þ

B. Constraints

With the restrictions introduced above, we found that the

quantities ϕð0Þ
1 and πð0Þ are constrained by Eqs. (36) and

(32). In the extremal case κðlÞ ¼ 0, they simplify to

ð̄πð0Þ þ ðπð0ÞÞ2 ¼ 0; ð43aÞ

δ̄ϕð0Þ
1 þ 2πð0Þϕð0Þ

1 ¼ 0: ð43bÞ

1Notice that the construction is similar to the construction of
canonical Weyl coordinates; see, e.g., Ref. [20].

2Here, we denote the usual real constant π by π∘ in order to
avoid confusion with the spin coefficient π.
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Using the coordinates introduced in Sec. III A, these
equations read

ðπð0ÞÞ0 − 1

2f
πð0Þf0 þ

ffiffiffiffiffiffiffiffiffiffi
A

2π∘f

s
ðπð0ÞÞ2 ¼ 0; ð44aÞ

ðϕð0Þ
1 Þ0 þ

ffiffiffiffiffiffiffi
2A
π∘f

s
πð0Þϕð0Þ

1 ¼ 0: ð44bÞ

Solving the equation for πð0Þ, we find

πð0Þ ¼
ffiffiffiffiffiffiffi
2π∘
A

r ffiffiffi
f

p
cπ þ ζ

; ð45Þ

where cπ is a complex integration constant. We discuss its

possible values below. The solution for ϕð0Þ
1 is then

ϕð0Þ
1 ¼ cϕ

ðcπ þ ζÞ2 ; ð46Þ

where cϕ is again a complex integration constant.
Inspection of the Ricci and the Bianchi identities shows

that the integration constants cϕ and cπ are not constrained.
We will show explicitly that they can be expressed in terms
of properties of the black hole, e.g., its charge Q0, and
depend neither on the data on N nor on Λ and J a.

Interestingly, the electromagnetic flux density ϕð0Þ
1 given

in Eq. (46) is additionally independent of the concrete
geometry of K0, namely the function f, which is con-
strained further under our assumptions. Thus, the horizon
geometry is not unique, but the electromagnetic flux
density depends only on the four real constants encoded
in cϕ and cπ for any geometry on K0.
The electric and magnetic charges QE and QM are given

by

Q0 ≡QE þ iQM ¼
I
K0

ϕð0Þ
1 dS; ð47Þ

where the area element of the metric (37) is

dS ¼ A
4π∘

dζ ∧ dϕ: ð48Þ

Integration yields

Q0 ¼
Acϕ
c2π − 1

ð49Þ

so that the value of the complex constant cϕ is fixed by the
value of the charge Q0 via

cϕ ¼ Q0

A
ðc2π − 1Þ: ð50Þ

Equation (49) shows that cπ ≠ �1 in order to have a well-
defined charge. For cπ ∈ ð−1;−1Þ, the integral in Eq. (47)
needs to be interpreted as principal value. If we demand that
the flux across any part of K0 be well defined, we have to
assume cπ ∉ ½−1; 1�.
In the case of uncharged black holes, Q0 ¼ 0, Eq. (50)

immediately implies cϕ ¼ 0 and, therefore, ϕð0Þ
1 ¼ 0 by

Eq. (46). In this case, thus, the Meissner effect states that
both electric and magnetic field lines are expelled from the
extremal horizon, as the flux of the field vanishes identi-
cally. If, on the other hand, the black hole is charged, there
is a nonvanishing flux of the field across the horizon. Then,
the statement of the Meissner effect is that this flux is only
due to the properties of the black hole and it is not affected
by the configuration of the matter outside the horizon.
Clearly, the charge Q0 fixes the integration constant cϕ via
Eq. (50), but the integration constant cπ , which affects the
flux in the charged case, is still not determined. However,
this constant is fixed completely by quantities given on
the horizon. In order to show this explicitly, we consider the
electromagnetic multipole moments associated with the
horizon in the sense of Ref. [21].
Although the multipole moments introduced in Ref. [21]

are defined for K0 being a topological 2-sphere, it is
straightforward to see that the definition is applicable for
our case K0 ≅ Sαþ

α− as well. Note that in Ref. [21], the
authors parametrize the metric (37) by the function f and
the radius R2 ¼ A

4π∘, although the latter does not have direct
geometrical meaning of a radius, as the authors also point
out. In our treatment, the area A and the deficit angles α�
are independent parameters of the 2-metric qð0Þab . With this,
the definition of the spherical harmonics, including the
normalization and orthogonality, remains unaffected.
Additionally, the coordinate ζ is still invariantly defined.
The higher complex electromagnetic moments are

defined, in analogy with their flat spacetime versions, by
(see3 Ref. [21])

Qn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π∘

2nþ 1

r �
A
4π∘

�n
2

I
K0

ϕð0Þ
1 Yn;0dS: ð51Þ

For convenience, we define the multipoles as complex
quantities, but in fact, the quasilocally defined electric and
magnetic multipoles are given by the real and imaginary
parts of Qn, respectively. The spherical harmonics are
defined by

Yn;0 ¼ PnðζÞ; ð52Þ

3In our conventions of units, the multipole moments are
defined with an additional factor 4π∘.
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where Pn are standard Legendre polynomials of the first
kind. These moments do not, in general, coincide with the
asymptotic multipole moments even in the case when there
is no exterior matter as was shown in Ref. [21] for the
quasilocal gravitational multipole moments.
Calculating the electromagnetic dipole and quadrupole

moments, we find

Q1 ¼ −Q0

ffiffiffiffiffiffiffi
A
4π∘

s �
cπ þ

1

2
ðc2π − 1Þ log cπ − 1

cπ þ 1

�
; ð53aÞ

Q2¼Q0

A
4π∘

�
3c2π−2þ3

2
cπðc2π−1Þlogcπ−1

cπþ1

�
: ð53bÞ

Although these quantities are formally complex, they
originate from real integrals, and, thus, the last terms must
be interpreted as the principal values of the complex
logarithms.
In principle, only one of the moments Q1 and Q2 would

suffice to express cπ , but in order to this explicitly, we use
an appropriate combination of the two moments so that cπ
turns out to be

cπ ¼ −
2

3Q1

ffiffiffiffiffiffiffi
A
4π∘

s �
Q0 þ

2π∘Q2

A

�
: ð54Þ

As we argued above, the constant cπ is not constrained
by any data determining the exterior geometry and matter.
Equation (54) now shows that it can be in fact related to the
electromagnetic dipole and quadrupole moments; there-
fore, it describes the intrinsic properties of the almost
isolated horizon.

IV. DISCUSSION

The purpose of the present paper was twofold. First, we
showed that the Meissner effect is an inherent property of
generic black holes including distorted ones and black
holes in a broader class of theories of gravity than general
relativity. Second, we elucidated all the assumptions
necessary to prove the Meissner effect, which might serve
as a starting point of understanding its physical origin.
Because of the former, we employ the notion of a weakly
isolated horizon. Since the Meissner effect requires a
certain degree of time independence of the horizon geom-
etry, we introduced the notion of almost isolated horizons,
Definition 3, that generalizes the concept of isolated
horizons. This enabled us to prove the following theorem.
Theorem 1: Let ðH; ½la�; naÞ be an axially symmetric,

extremal, almost isolated horizon with the topology H≅
R×Sαþ

α− equipped with a Bondi-like tetrad ðla; na; ma; m̄aÞ.
Let the projection (2) of Einstein’s equations and Maxwell
equations (A10a) and (A10b) be satisfied with the current
J a proportional to la. In addition, let ϕ2 be constant along

la onH, and let ϕ1 share the axial symmetry of the metric.

Then, the electric and magnetic flux density ϕð0Þ
1 does not

depend on the exterior matter described by the initial data
given on N , the nonvanishing component of the current
J a, nor on the scalar curvature Λ.
Let us briefly discuss this theorem. The physical inter-

pretation of the topology Sαþ
α− of the slices of the horizon is

that the horizon might be pierced by struts producing
topological defects at the poles. An example is the C-metric
[12], which describes black holes accelerated by the tension
of the struts. Moreover, the treatment in Ref. [13] shows
that in the C-metric electromagnetic test fields can exhibit
the Meissner effect. This result is included here. But we go
also beyond that by generalizing it to the strong field
regime and by allowing possible deformations of the black
hole due to external matter.
The time independence of ϕ2 on the horizon assumed in

the theorem would be always satisfied if the electromag-
netic field were stationary. This is to be expected by the
analogy with the classical Meissner effect for supercon-
ductors, where the magnetic field needs to be stationary
with respect to the superconductor.
We stress that the choice of the Bondi-like tetrad

included in the theorem is just a choice of the gauge
and does not constrain the geometry, cf. Sec. II B. In this

tetrad, ϕð0Þ
1 can be regarded as the flux of the electromag-

netic field across the horizon. Note that the theorem
includes the Meissner effect for the electric and magnetic
fields simultaneously. This does not come as a surprise
since the field equations are symmetric with regard to
electric and magnetic fields and the (non)existence of
electric or magnetic charges is not required.
Finally, we have shown that the electromagnetic flux

density ϕð0Þ
1 is determined solely by five intrinsic properties

of the black hole, namely by the area, electric and magnetic
charges, and dipole moments. Hence, the matter outside the
black hole, which is described by the data on N , the scalar
curvature, and the electromagnetic currents, does not affect

ϕð0Þ
1 . That is the essence of the Meissner effect.

Additionally, we have found that ϕð0Þ
1 is independent of

the metric on K0, cf. (46), and proportional to the total
charge. As a consequence, we get the following theorem,
which generalizes our previous results [11] even in the case
of an uncharged black hole.
Theorem 2: Under the assumptions of Theorem 1, the

electric and magnetic flux density ϕ1 vanishes if the almost
isolated horizon is uncharged.
To conclude the paper, we discuss an open question

regarding the necessity of axial symmetry raised already in
Ref. [5]. Our proof suggests that the stationarity (or at least
the parts of the stationarity we impose) is a crucial
assumption and cannot be further relaxed. On the other
hand, we impose the axial symmetry mainly in order to
obtain the explicit solution of the constraint equations. It
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seems feasible that this assumption can be relaxed entirely,
which will be a subject of future investigations.
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APPENDIX: NEWMAN-PENROSE FORMALISM

In this Appendix, we review the definitions and equa-
tions of the NP formalism relevant for our discussion. We
follow the conventions of Refs. [23–25], and we refer the
reader to these publications for the full treatment of the NP
formalism.
The null tetrad consists of four null vectors la, na, ma,

and m̄a normalized by the conditions lana ¼ −mam̄a ¼ 1,
while all remaining contractions vanish. The spin coeffi-
cients, which encode the connection, are given by the
relations

κ ¼ maDla; τ ¼ maΔla; σ ¼ maδla; ðA1aÞ

ρ ¼ maδ̄la; π ¼ naDm̄a; ν ¼ naΔm̄a; ðA1bÞ

λ ¼ naδ̄m̄a; μ ¼ naδm̄a; ðA1cÞ

ε¼1

2
½naDla−m̄aDma�; β¼1

2
½naδla−m̄aδma�; ðA1dÞ

γ¼1

2
½naΔla−m̄aΔma�; α¼1

2
½naδ̄la−m̄aδ̄ma�; ðA1eÞ

where

D¼la∇a; Δ¼na∇a; δ¼ma∇a; δ̄¼ m̄a∇a: ðA2Þ

Acting on scalars, the operators D, Δ, δ obey the commu-
tation relations:

½D; δ� ¼ ðπ̄ − ᾱ − βÞD − κΔþ ðρ̄ − ε̄þ εÞδþ σδ̄; ðA3aÞ

½Δ;D�¼ ðγþ γ̄ÞDþðεþ ε̄ÞΔ−ðτ̄þπÞδ−ðτþ π̄Þδ̄; ðA3bÞ

½Δ; δ� ¼ ν̄Dþ ðᾱþ β − τÞΔþ ðγ − γ̄ − μÞδ − λ̄ δ̄; ðA3cÞ

½δ; δ̄� ¼ ðμ − μ̄ÞDþ ðρ − ρ̄ÞΔþ ðᾱ − βÞδ̄ − ðα − β̄Þδ:
ðA3dÞ

The Weyl part of the Riemann tensor is encoded in the
Weyl scalars

Ψ0¼Cabcdlamblcmd; Ψ1¼Cabcdlanblcmd; ðA4aÞ

Ψ2¼Cabcdlambm̄cnd; Ψ3¼Cabcdlanbm̄cnd; ðA4bÞ

Ψ4 ¼ Cabcdm̄anbm̄cnd; ðA4cÞ

where Cabcd is the Weyl tensor. The trace-free part of the
Ricci tensor is given by the Ricci scalars

Φ00 ¼ −
1

2
Rablalb; Φ01 ¼ −

1

2
Rablamb; ðA5aÞ

Φ02 ¼ −
1

2
Rabmamb; Φ12 ¼ −

1

2
Rabnamb; ðA5bÞ

Φ11 ¼ −
1

4
Rabðlanb þmam̄bÞ; ðA5cÞ

Φ22 ¼ −
1

2
Rabnanb: ðA5dÞ

Finally, we introduce the symbol

Λ ¼ 1

24
R; ðA6Þ

where R is the scalar curvature. These NP components of
the Riemann tensor are governed by the Ricci and Bianchi
identities:

Dρ − δ̄κ ¼ ρ2 þ ðϵþ ϵ̄Þρ − κð3αþ β̄ − πÞ − τκ̄ þ σσ̄ þΦ00; ðA7aÞ
Dσ − δκ ¼ ðρþ ρ̄þ 3ε − ε̄Þσ − ðτ − π̄ þ ᾱþ 3βÞκ þ Ψ0; ðA7bÞ

Dτ − Δκ ¼ ρðτ þ π̄Þ þ σðτ̄ þ πÞ þ ðε − ε̄Þτ − ð3γ þ γ̄Þκ þ Ψ1 þΦ01; ðA7cÞ

Dα − δ̄ε ¼ ðρþ ε̄ − 2εÞαþ βσ̄ − β̄ε − κλ − κ̄γ þ ðεþ ρÞπ þΦ10; ðA7dÞ
Dβ − δε ¼ ðαþ πÞσ þ ðρ̄ − ε̄Þβ − ðμþ γÞκ − ðᾱ − π̄ÞεþΨ1; ðA7eÞ

Dγ − Δε ¼ ðτ þ π̄Þαþ ðτ̄ þ πÞβ − ðεþ ε̄Þγ − ðγ þ γ̄Þεþ τπ − νκ þ Ψ2 − ΛþΦ11; ðA7fÞ

MEISSNER EFFECT FOR AXIALLY SYMMETRIC CHARGED … PHYS. REV. D 97, 084042 (2018)

084042-9



Dλ − δ̄π ¼ ðρ − 3εþ ε̄Þλþ σ̄μþ ðπ þ α − β̄Þπ − νκ̄ þΦ20; ðA7gÞ

Dμ − δπ ¼ ðρ̄ − ε − ε̄Þμþ σλþ ðπ̄ − ᾱþ βÞπ − νκ þ Ψ2 þ 2Λ; ðA7hÞ

Dν − Δπ ¼ ðπ þ τ̄Þμþ ðπ̄ þ τÞλþ ðγ − γ̄Þπ − ð3εþ ε̄ÞνþΨ3 þΦ21; ðA7iÞ

Δλ − δ̄ν ¼ −ðμþ μ̄þ 3γ − γ̄Þλþ ð3αþ β̄ þ π − τ̄Þν −Ψ4; ðA7jÞ

Δμ − δν ¼ −ðμþ γ þ γ̄Þμ − λλ̄þ ν̄π þ ðᾱþ 3β − τÞν −Φ22; ðA7kÞ

Δβ − δγ ¼ ðᾱþ β − τÞγ − μτ þ σνþ εν̄þ ðγ − γ̄ − μÞβ − αλ̄ −Φ12; ðA7lÞ

Δσ − δτ ¼ −ðμ − 3γ þ γ̄Þσ − λ̄ρ − ðτ þ β − ᾱÞτ þ κν̄ −Φ02; ðA7mÞ

Δρ − δ̄τ ¼ ðγ þ γ̄ − μ̄Þρ − σλþ ðβ̄ − α − τ̄Þτ þ νκ − Ψ2 − 2Λ; ðA7nÞ

Δα − δ̄γ ¼ ðρþ εÞν − ðτ þ βÞλþ ðγ̄ − μ̄Þαþ ðβ̄ − τ̄Þγ − Ψ3; ðA7oÞ

δρ − δ̄σ ¼ ðᾱþ βÞρ − ð3α − β̄Þσ þ ðρ − ρ̄Þτ þ ðμ − μ̄Þκ −Ψ1 þΦ01; ðA7pÞ

δα − δ̄β ¼ μρ − λσ þ αᾱþ ββ̄ − 2αβ þ ðρ − ρ̄Þγ þ ðμ − μ̄Þε − Ψ2 þ ΛþΦ11; ðA7qÞ

δλ − δ̄μ ¼ ðρ − ρ̄Þνþ ðμ − μ̄Þπ þ ðαþ β̄Þμþ ðᾱ − 3βÞλ − Ψ3 þΦ21; ðA7rÞ

DΨ1− δ̄Ψ0−DΦ01þδΦ00¼ðπ−4αÞΨ0þ2ð2ρþεÞΨ1−3κΨ2þ2κΦ11−ðπ̄−2ᾱ−2βÞΦ00−2σΦ10−2ðρ̄þεÞΦ01þ κ̄Φ02;

ðA8aÞ

DΨ2− δ̄Ψ1þΔΦ00− δ̄Φ01þ2DΛ¼−λΨ0þ2ðπ−αÞΨ1þ3ρΨ2−2κΨ3þ2ρΦ11þ σ̄Φ02þð2γþ2γ̄− μ̄ÞΦ00

−2ðαþ τ̄ÞΦ01−2τΦ10; ðA8bÞ

DΨ3− δ̄Ψ2−DΦ21þδΦ20−2δ̄Λ¼−2λΨ1þ3πΨ2þ2ðρ−εÞΨ3−κΨ4þ2μΦ10−2πΦ11−ð2βþ π̄−2ᾱÞΦ20

−2ðρ̄−εÞΦ21þ κ̄Φ22; ðA8cÞ

DΨ4− δ̄Ψ3þΔΦ20− δ̄Φ21¼−3λΨ2þ2ðαþ2πÞΨ3þðρ−4εÞΨ4þ2νΦ10−2λΦ11−ð2γ−2γ̄þ μ̄ÞΦ20−2ðτ̄−αÞΦ21þ σ̄Φ22;

ðA8dÞ

ΔΨ0−δΨ1þDΦ02−δΦ01¼ð4γ−μÞΨ0−2ð2τþβÞΨ1þ3σΨ2þðρ̄þ2ε−2ε̄ÞΦ02þ2σΦ11−2κΦ12− λ̄Φ00þ2ðπ̄−βÞΦ01;

ðA8eÞ

ΔΨ1−δΨ2−ΔΦ01þ δ̄Φ02−2δΛ¼νΨ0þ2ðγ−μÞΨ1−3τΨ2þ2σΨ3− ν̄Φ00þ2ðμ̄−γÞΦ01þð2αþ τ̄−2β̄ÞΦ02

þ2τΦ11−2ρΦ12; ðA8fÞ

ΔΨ2−δΨ3þDΦ22−δΦ21þ2ΔΛ¼2νΨ1−3μΨ2þ2ðβ−τÞΨ3þσΨ4−2μΦ11− λ̄Φ20þ2πΦ12þ2ðβþ π̄ÞΦ21

þðρ̄−2ε−2ε̄ÞΦ22; ðA8gÞ

ΔΨ3−δΨ4−ΔΦ21þ δ̄Φ22¼3νΨ2−2ðγþ2μÞΨ3þð4β−τÞΨ4−2νΦ11− ν̄Φ20þ2λΦ12þ2ðγþ μ̄ÞΦ21þðτ̄−2β̄−2αÞΦ22;

ðA8hÞ
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DΦ11−δΦ10þΔΦ00− δ̄Φ01þ3DΛ¼ð2γþ2γ̄−μ− μ̄ÞΦ00þðπ−2α−2τ̄ÞΦ01þðπ̄−2ᾱ−2τÞΦ10þ2ðρþ ρ̄ÞΦ11

þ σ̄Φ02þσΦ20− κ̄Φ12−κΦ21; ðA8iÞ

DΦ12−δΦ11þΔΦ01− δ̄Φ02þ3δΛ¼ð2γ−μ−2μ̄ÞΦ01þ ν̄Φ00− λ̄Φ10þ2ðπ̄−τÞΦ11þðπþ2β̄−2α− τ̄ÞΦ02

þð2ρþ ρ̄−2ε̄ÞΦ12þσΦ21−κΦ22; ðA8jÞ

DΦ22−δΦ21þΔΦ11− δ̄Φ12þ3ΔΛ¼νΦ01þ ν̄Φ10−2ðμþ μ̄ÞΦ11−λΦ02− λ̄Φ20þð2π− τ̄þ2β̄ÞΦ12

þð2β−τþ2π̄ÞΦ21þðρþ ρ̄−2ε−2ε̄ÞΦ22: ðA8kÞ

The NP components of the electromagnetic tensor Fab
are defined by

ϕ0 ¼ Fablamb; ϕ2 ¼ Fabm̄anb; ðA9aÞ

ϕ1 ¼
1

2
Fab½lanb −mam̄b� ðA9bÞ

so that the Maxwell equations read

Dϕ1− δ̄ϕ0¼ðπ−2αÞϕ0þ2ρϕ1−κϕ2−J ala; ðA10aÞ

Dϕ2− δ̄ϕ1¼−λϕ0þ2πϕ1þðρ−2εÞϕ2−J am̄a; ðA10bÞ

Δϕ0−δϕ1¼ð2γ−μÞϕ0−2τϕ1þσϕ2þJ ama; ðA10cÞ

Δϕ1−δϕ2¼νϕ0−2μϕ1þð2β−τÞϕ2þJ ana; ðA10dÞ
where

J a ¼
1

2
ðjEa þ ijMa Þ ðA11Þ

and jEa and jMa are the electric and magnetic currents,
respectively. The Ricci tensor in the Einstein-Maxwell
spacetime is given by

Φmn ¼ ϕmϕ̄n; ðA12Þ

these are Einstein’s equations for electrovacuum spacetime.
By the spin transformation in the spacelike plane

spanned by ma and m̄a with a real parameter χ, we mean
the transformation

l̂a ↦ la; n̂a ↦ na; m̂a ↦ e2iχma; ðA13Þ

under which the spin coefficient ε transforms as

ε ↦ εþ iDχ: ðA14Þ

The quantity η is said to have a spin weight s if it transforms
like η ↦ e2isχη under the spin. The associated spin raising/
lowering operators ð and ð̄ are defined by [24,26]

ðη ¼ δηþ sðᾱ − βÞη; ð̄η ¼ δ̄η − sðα − β̄Þη: ðA15Þ

[1] R. M. Wald, Phys. Rev. D 10, 1680 (1974).
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[4] J. Bičák and L. Dvořák, Phys. Rev. D 22, 2933 (1980).
[5] J. Bičák and V. Janiš, Mon. Not. R. Astron. Soc. 212, 899

(1985).
[6] V. Karas and D. Vokrouhlický, J. Math. Phys. (N.Y.) 32, 714

(1991).
[7] V. Karas and Z. Budinová, Phys. Scr. 61, 253 (2000).
[8] G.W. Gibbons, Y. Pang, and C. N. Pope, Phys. Rev. D 89,

044029 (2014).
[9] J. Bičák and F. Hejda, Phys. Rev. D 92, 104006 (2015).

[10] J. Bičák and T. Ledvinka, Nuovo Cimento Soc. Ital. Fis. B
115, 739 (2000).

[11] N. Gürlebeck and M. Scholtz, Phys. Rev. D 95, 064010
(2017).

[12] J. B. Griffiths and J. Podolský, Exact Space-Times in
Einstein’s General Relativity (Cambridge University Press,
Cambridge, England, 2009).

[13] D. Kofroň, Phys. Rev. D 93, 104012 (2016).
[14] R. Wald, General Relativity (University of Chicago,

Chicago, 2010).
[15] A. Ashtekar, C. Beetle, and J. Lewandowski, Classical

Quantum Gravity 19, 1195 (2002).
[16] R. Geroch and J. B. Hartle, J. Math. Phys. (N.Y.) 23, 680

(1982).
[17] B. Krishnan, Classical Quantum Gravity 29, 205006 (2012).
[18] M. Scholtz, A. Flandera, and N. Gürlebeck, Phys. Rev. D

96, 064024 (2017).
[19] I. Rácz, Classical Quantum Gravity 24, 5541 (2007).

MEISSNER EFFECT FOR AXIALLY SYMMETRIC CHARGED … PHYS. REV. D 97, 084042 (2018)

084042-11

https://doi.org/10.1103/PhysRevD.10.1680
https://doi.org/10.1007/BF00766421
https://doi.org/10.1007/BF00766421
https://doi.org/10.1103/PhysRevD.12.3037
https://doi.org/10.1103/PhysRevD.12.3037
https://doi.org/10.1103/PhysRevD.22.2933
https://doi.org/10.1093/mnras/212.4.899
https://doi.org/10.1093/mnras/212.4.899
https://doi.org/10.1063/1.529360
https://doi.org/10.1063/1.529360
https://doi.org/10.1238/Physica.Regular.061a00253
https://doi.org/10.1103/PhysRevD.89.044029
https://doi.org/10.1103/PhysRevD.89.044029
https://doi.org/10.1103/PhysRevD.92.104006
https://doi.org/10.1103/PhysRevD.95.064010
https://doi.org/10.1103/PhysRevD.95.064010
https://doi.org/10.1103/PhysRevD.93.104012
https://doi.org/10.1088/0264-9381/19/6/311
https://doi.org/10.1088/0264-9381/19/6/311
https://doi.org/10.1063/1.525384
https://doi.org/10.1063/1.525384
https://doi.org/10.1088/0264-9381/29/20/205006
https://doi.org/10.1103/PhysRevD.96.064024
https://doi.org/10.1103/PhysRevD.96.064024
https://doi.org/10.1088/0264-9381/24/22/016


[20] N. Gürlebeck, Phys. Rev. D 90, 024041 (2014).
[21] A. Ashtekar, J. Engle, T. Pawlowski, and C. V. D. Broeck,

Classical Quantum Gravity 21, 2549 (2004).
[22] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers,

and E. Herlt, Exact Solutions of Einstein’s Field Equations,
Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 2009).

[23] R. Penrose and W. Rindler, Spinors and Space-Time (Cam-
bridge University Press, Cambridge, England, 1984), Vol. 1.

[24] J. Stewart, Advanced General Relativity (Cambridge
University Press, Cambridge, England, 1993).

[25] J. Bičák, M. Scholtz, and P. Tod, Classical Quantum Gravity
27, 25 (2010).

[26] J. N. Goldberg, J. Math. Phys. (N.Y.) 8, 2155 (1967).

NORMAN GÜRLEBECK and MARTIN SCHOLTZ PHYS. REV. D 97, 084042 (2018)

084042-12

https://doi.org/10.1103/PhysRevD.90.024041
https://doi.org/10.1088/0264-9381/21/11/003
https://doi.org/10.1088/0264-9381/27/5/055007
https://doi.org/10.1088/0264-9381/27/5/055007
https://doi.org/10.1063/1.1705135

